
Isochoric Laser Heating for the study of Warm Dense Matter

Andrew Ng

Physical Sciences Directorate
Lawrence Livermore National Laboratory

Acknowledgment

UBC

Andrew Forsman (GA)

Gordon Chiu (Phase Tech.)

Tommy Ao (SNL)

Edward Lee (MIT)

Heywood Tam (Caltech)

Duncan Hanson (Cambridge)

Ingrid Koslow (UC Santa Barbara)

Research supported by

- LLNL LDRD
- NSERC, Canada

LLNL

Dick More (LBNL)

Klaus Widmann

Mark Foord

Dwight Price

AI Ellis

Paul Springer

Yuan Ping

Tadashi Ogitsu

David Prendergast (LBNL)

Eric Schwegler

Rip Collins

Stephanie Hansen

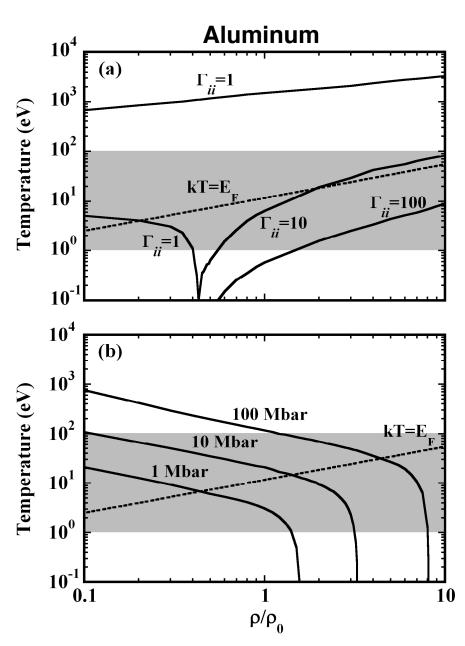
Bill Isaacs

Vijay Sonnad

Phil Sterne

Brian Wilson

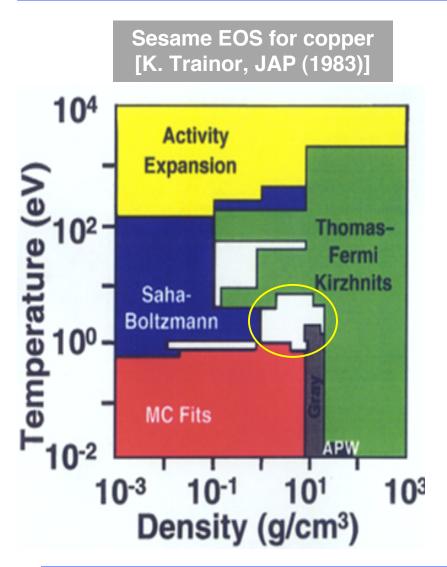
Outline


- Introduction
 - What is Warm Dense Matter?
 - Idealized Slab Plasma & Isochoric Laser Heating
- Physics under non-equilibrium, extreme conditions
 - Electrical conductivities
 - Lattice stability
 - Band structure and electron density of state

These are university-scale experiments

What is Warm Dense Matter?

- WDM introduced in 2000, characterized by
 - − kT ~ E_{Fermi}
 - $\Gamma_{ii} = [P.E./K.E.]_{ions} > 1$
- Many-body, disordered system
 - Partial electron degeneracy
 - Excited electronic states
 - Pressure ionization
 - Strong ion-ion correlation
- High-pressure system
 - WDM is also HED Matter (>1 Mbar or 10¹¹ J/m³)
 - Inertial confinement only
 - Rapid expansion


Warm Dense Matter is both fundamentally important and of broad relevance

- As finite-temperature condensed matter or strongly-coupled degenerate plasma, WDM is the basis for understanding the convergence of condensed matter and plasma science
- WDM finds applications in many disciplines
 - High Energy Density physics
 - Inertial Confinement Fusion
 - Shock physics
 - Material science
 - Planetary science

WDM is an uncharted frontier as readily seen from the widely use EOS table - Sesame

APW - Electron band theory at 0K

GRAY - Semi-empirical Gruneisen-Debye theory for solid-melt-liquid

MC - Soft Sphere (Expanded liquid, vapor)

OCCIPITAL - Saha ionization equilibrium

TFNUC - Thomas-Fermi-Kirzhnits theory with semi-empirical nuclear corrections

ACTEX - Perturbation theory for high temperature ionization equilibrium

A critical void appears in the Warm Dense Matter regime

A major hurdle in WDM studies is the lack of single-state data

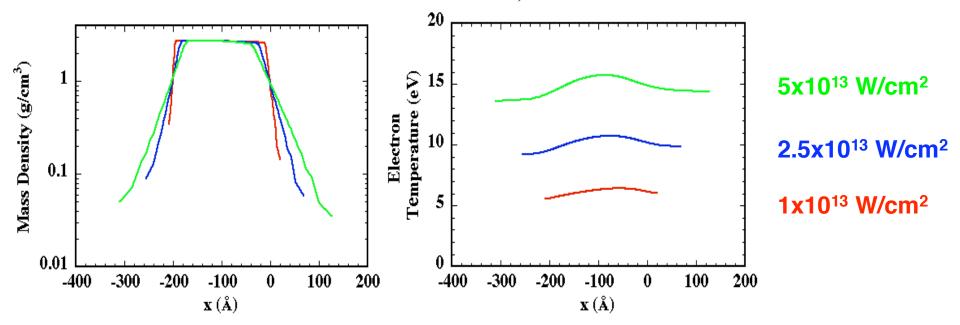
- Laboratory WDM tends to be non-uniform due to hydrodynamic expansion at extreme pressure
- Properties measured on non-uniform or multistate systems can only be compared with theory through code simulations that take into account gradient effects

Unambiguous tests of theory requires

- Single-state physical data
- Directly observed state parameters

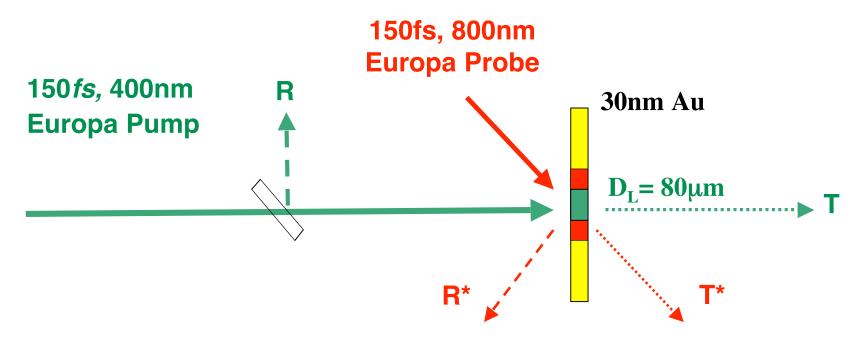
The concept of an *Idealized Slab Plasma* offers a means to achieve single-state measurements

- An Idealized Slab Plasma is a planar plasma that can be considered as a single uniform state in which any residual non-uniformities will impose negligible impact on the measurement of its uniform properties
- The state can be characterized from direct measurements such as mass density and energy density


An approach to realize the *ISP* concept is *Isochoric Laser Heating* of a solid

- Laser heating in the fs time scale mitigates hydro expansion to yield isochoric condition
- Matching sample thickness to range of laser deposition or conduction scale length yields isothermal condition

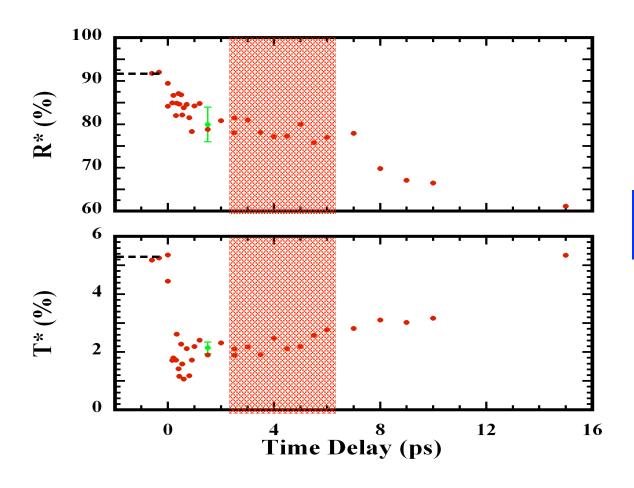
Forsman et al., PRB <u>58</u>, R1248 (1998)


20nm Al heated with a 100fs, 400nm laser

Isochoric heating is scalable to X-rays, electrons, protons or ions

The first *ILH* experiment is the measurement of electrical conductivity of warm dense Au

- Isothermal heating produced by laser skin-depth deposition and ballistic electron transport
- Isochoric condition maintained by material strength & inertia


WDM state characterized by ρ_0 and $\Delta\varepsilon$ – $\Delta\varepsilon$ determined directly from {R, T} of pump laser

Probe $\{R^*, T^*\}$ yields single-state data on $\sigma(\rho_0, \Delta \varepsilon)$

Measurements of S-pol {R*, T*} reveal an interesting temporal behavior

- Three distinct stages are observed
 - An initial transient
 - Quasi-steady state
 - Hydrodynamic expansion

S-pol probe

 $\Delta \varepsilon = (3.5 \pm 1.0) \times 10^6 \text{ J/kg}$

Similar behavior seen with P-pol probe

Quasi-steady-state behavior is unexpected

- Hydrodynamic simulations suggest disassembly of the foil in ~1ps after heating when the lattice reaches melting temperature
 - Expansion gives rise to a plasma gradient on the surface of the foil; the gradient scale length will continue to increase with time
 - To maintain constant probe R* and T*, it would require the dielectric properties of the non-uniform system to evolve in a manner that precisely mitigates gradient effects at all times

This is improbable

The problem of hydro code is the lack of solid state effects

Quasi-steady-state behavior has important consequences


- It confirms the absence of significant hydrodynamic expansion, preserving the uniform, slab structure of the heated foil
- It yields an uniform state that is characterized by the direct observables of mass density ρ_o and excitation energy density $\Delta \varepsilon$

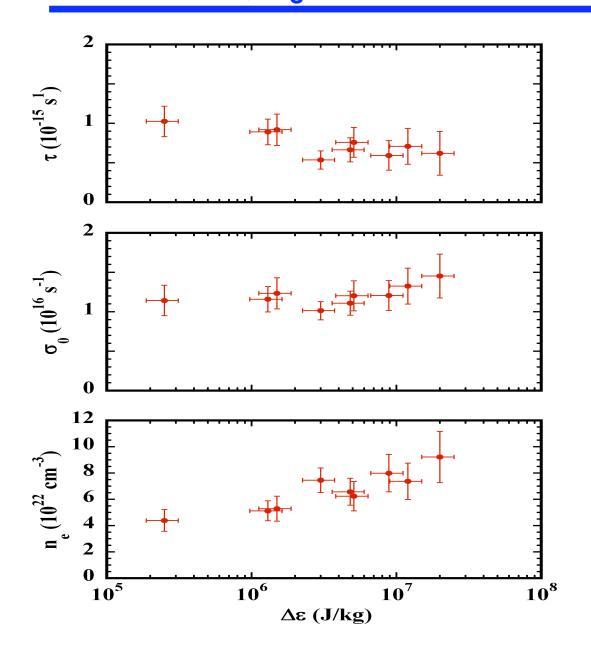
This ensures realization of the *Idealized Slab Plasma* concept in isochoric heating of a solid by *fs* laser

The quasi-steady state validates single-state measurement of AC conductivity

- Probe {R*,T*} data for quasi-steady state used to solve Helmholtz eqs. for EM wave in a uniform dielectric slab
- This yields $\sigma_{\omega}(\rho_{o}, \Delta \varepsilon)$ as direct benchmark for theory

Results obtained from 800nm, *S-pol* probe

We can learn more if we assume nearly free electron behavior


- Nearly free electron behavior is expected
 - Absence of interband transition at 800 nm
 - Conductivity effected by electrons near Fermi surface

• Drude model:
$$\sigma(\omega) = \sigma_r + i\sigma_i = \frac{\sigma_o}{1 + \omega^2 \tau^2} (1 + i\omega\tau),$$

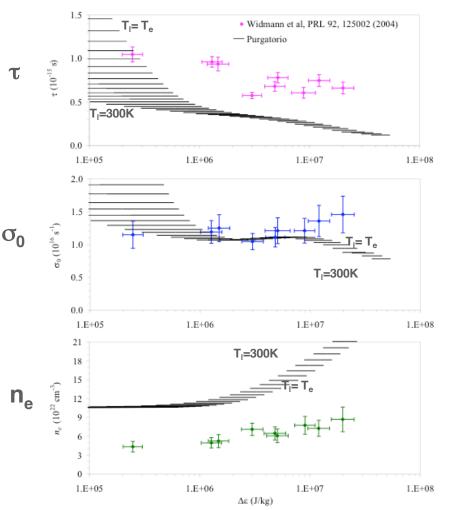
$$\tau = \frac{\sigma_i}{\sigma_r} \frac{1}{\omega}, \qquad \sigma_o = \sigma_r (1 + \omega^2 \tau^2), \qquad n_e = \frac{m_e \sigma_o}{e^2 \tau}$$

This extends our single-state data to include τ , σ_0 and $\langle Z \rangle$

At normal conditions:

$$\sigma_0 = 4.1 \times 10^{17} \, \text{s}^{-1}$$

$$n_{\rho} = 3.8 \times 10^{22} \, \text{cm}^{-3}$$


Widmann *et al.*, PRL <u>92</u>, 125002 (2004)

Drude behavior of σ at 800nm is subsequently confirmed

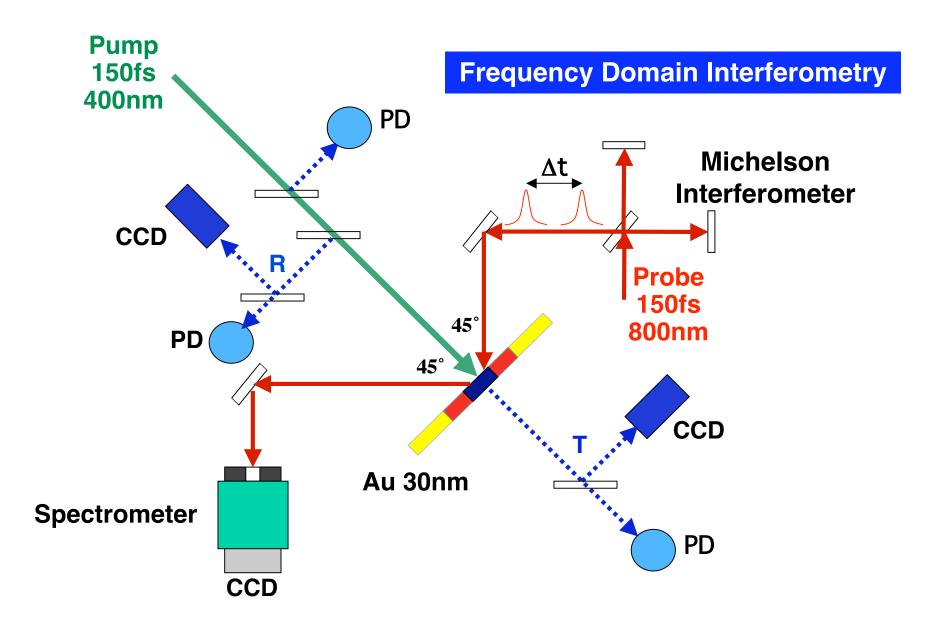
The data provided the first benchmark of Purgatorio in the WDM regime

S. Hansen, B. Isaacs, V. Sonnad, P. Sterne, B. Wilson

Purgatorio Code

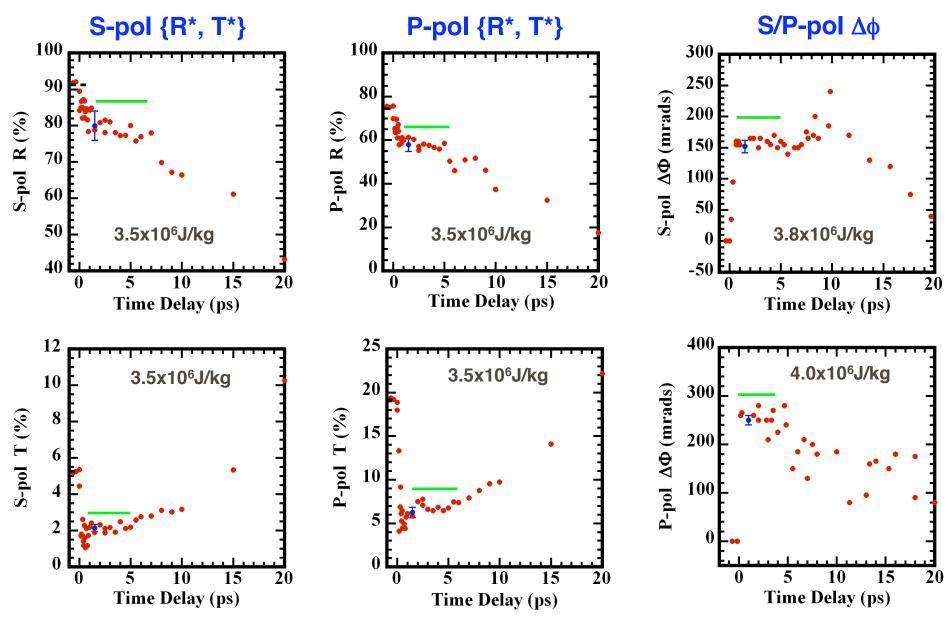
- Neutral-pseudo atom model
- Dirac equ. for bound wave functions
- Phase shifts by matching numerical wave functions to analytical forms at ion sphere radius
- Bound & continuum electron density from Fermi distribution
- Inelastic crystal structure factor
 [Baiko et al., PRL 81, 5556 (1998)]
- Electrical resistivity from extended Ziman formulation
- Agreement in σ_0 for $\Delta \epsilon$ <10⁷ J/kg
- Discrepancy in τ, n_e
- Need for multi-parameter tests

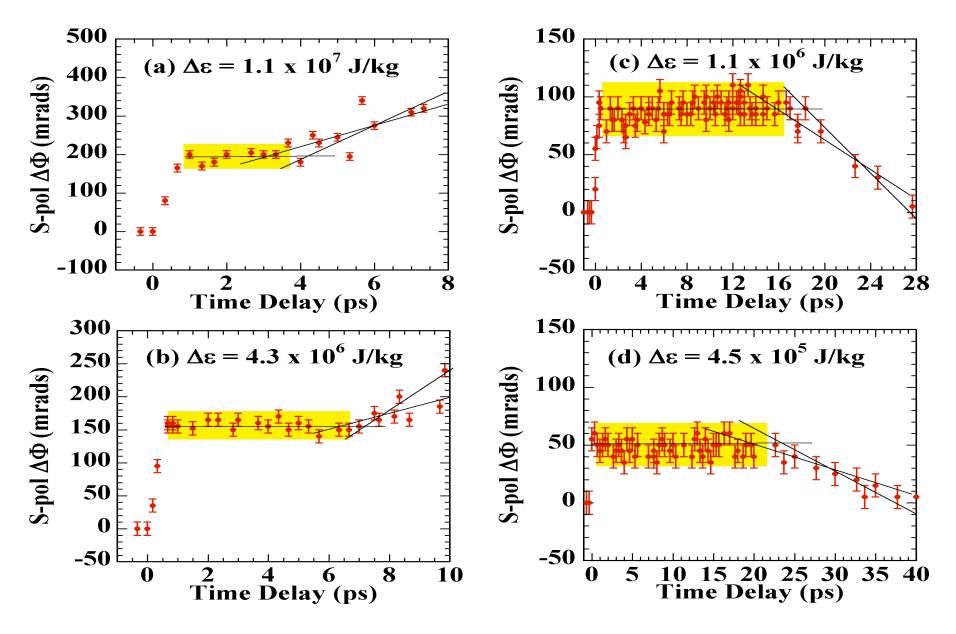
What is the phase of the quasi-steady state?


- Calculations of equation of state and transport properties require phase information, solid versus liquid, to determine the structure factor of the state
- The identity of the quasi-steady state is also key to understanding non-equilibrium phase transitions induced by ultrafast excitation

The immediate questions are

- If the lifetime of quasi-steady state is governed by stability of the lattice, is the limit set by a critical value of lattice energy density and can it be determined?
- Does the quasi-steady state retain any long or short range order?


To determine lifetime of quasi-steady state, we probe hydro expansion with FDI


Quasi-steady state is confirmed in six different measurements

To quantify quasi-steady state duration, we use an extensive set of S-pol FDI data

What are the processes governing solidplasma transition in the heated foil?

- Laser heating of s/p electrons and photo excitation of d-electrons
- Electron-hole recombination
- Electron-electron thermalization
- Escape of heated electrons forming a surface sheath; sheath thickness is limited by space charge field
- Lattice heating effected by electron-phonon coupling
- Melting of the lattice
 - Ultrafast, non-thermal melting?
 - Thermal melting to meta-stable superheated liquid?
 - Superheated solid?
- Disassembly of the superheated state into a plasma

To describe lattice heating, we use a modified Two-Temperature Model

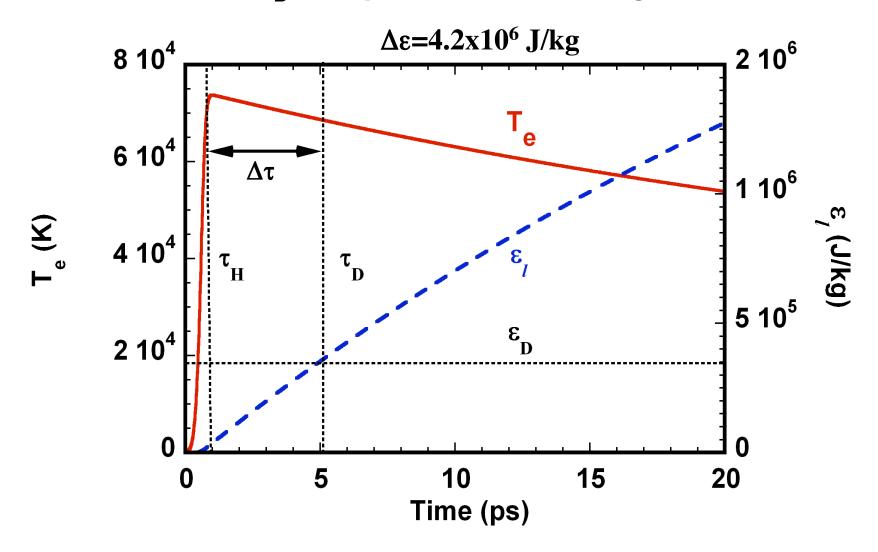
TTM:
$$C_{e}(T_{e}) \frac{dT_{e}(t)}{dt} = -g \left[T_{e}(t) - \varepsilon_{l}(t) \frac{\rho_{Au}}{C_{l}} \right] + S(t)$$

$$\rho_{Au} \frac{d(\varepsilon_{l}(t))}{dt} = g \left[T_{e}(t) - \varepsilon_{l}(t) \frac{\rho_{Au}}{C_{l}} \right], \qquad \varepsilon_{l}(t) = \frac{C_{l}T_{l}(t)}{\rho_{Au}}$$

Electron-phonon coupling: $g = (2.2\pm0.3) \times 10^{16} \text{ W/m}^3 \cdot \text{K}^*$

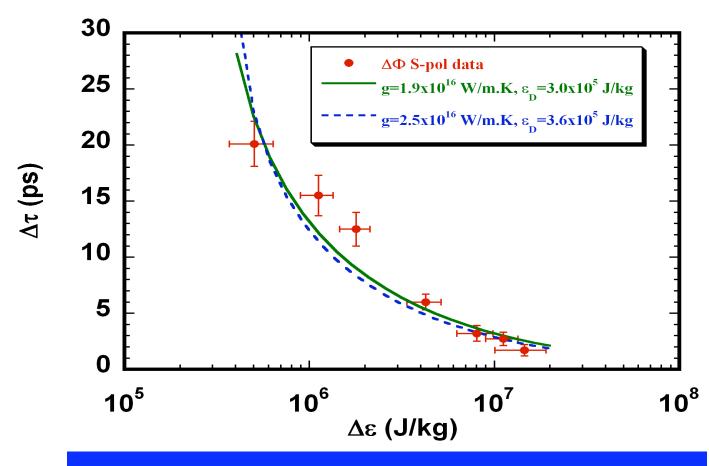
Heat capacities:
$$C_e(T_e) = \frac{\partial U_e(T_e)}{\partial T_e}, \quad C_l = 2.5 \times 10^6 \text{ J/m}^3 \cdot \text{K}^{\dagger}$$

Laser energy deposition:
$$S(t) = \frac{\Delta \varepsilon \rho_{Au}}{\tau_P \sqrt{\pi}} \exp\left(-\frac{t^2}{\tau_P^2}\right)$$


^{*}Hohlfeld et al. Chem. Phys. 251, 237 (2000)

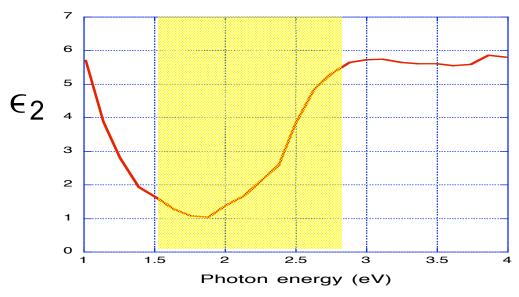
[†]Maxmillian's Chemical and Physical Data, Maxmillian Press, London, 1992

We postulate that disassembly is a rate-independent critical phenomenon

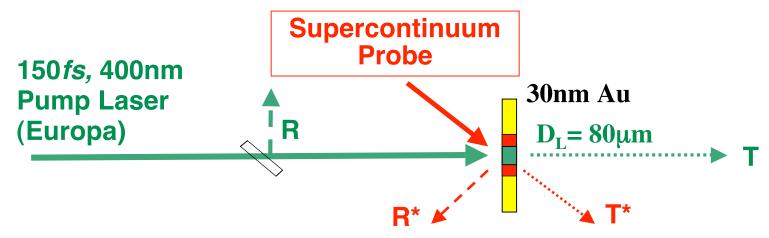

• Quasi-steady-state duration $\Delta \tau$ is determined by a critical value ϵ_D independent of heating rate (or $\Delta \epsilon$)

The heating-disassembly model shows good agreement with observation

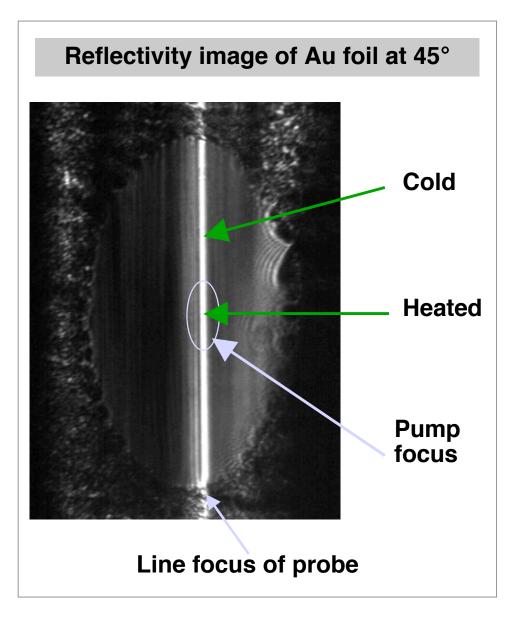
 This yielded the first measurement of the critical lattice energy ε_D=(3.3±0.3)x10⁵ J/kg for solid-plasma transition under ultarfast laser excitation



Ao et al., Phys. Rev. Lett. 96, 055001(2006)

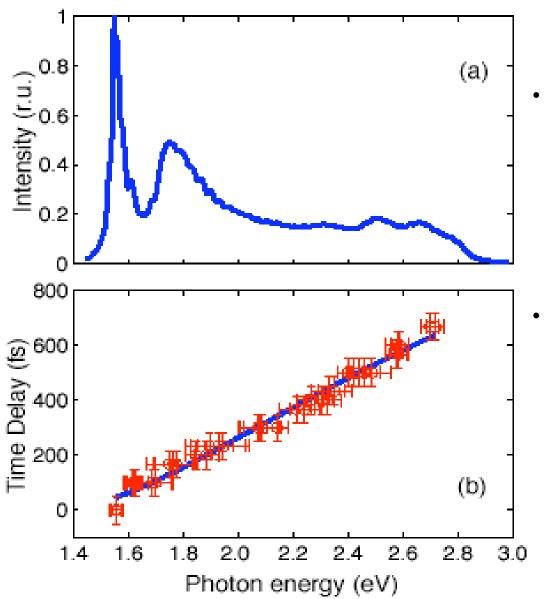

To probe long/short range order in quasi-steady state, we use broadband dielectric function

• For Au, intra & inter-band transitions in 450-800nm of $\varepsilon(hv)$



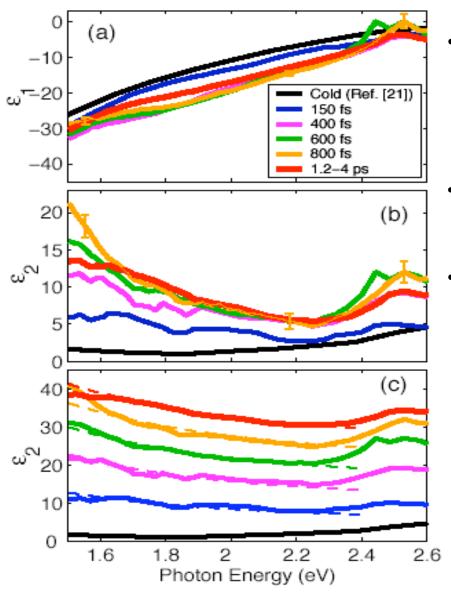
ε(hv) determined from {R*, T*} of supercontinuum probe

Probe {R*, T*} measured with *in-situ* calibration



- 180fs, 800nm laser is focused onto CaF₂ to generate a 450-800nm supercontinuum probe
- Probe illuminates nanofoil at 45°-incidence in 30μmx600μm line focus, covering both heated and unheated regions
- In-situ calibration eliminates the need for
 - Absolute intensity calibration
 - Measurement of shot-to-shot variation in probe intensity

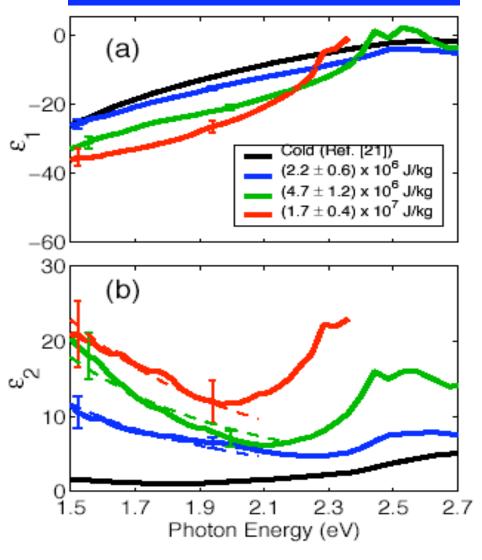
Frequency chirp in supercontinuum is measured using Kerr optical gate


 Supercontinuum provides spectral measurements from 450-800 nm

- Frequency chirp gives rise to time-encoded spectrum
 - To remove effect of chirp in measurements
 - Bin spectral data in 10nm intervals
 - Apply temporal shifts using chirp data

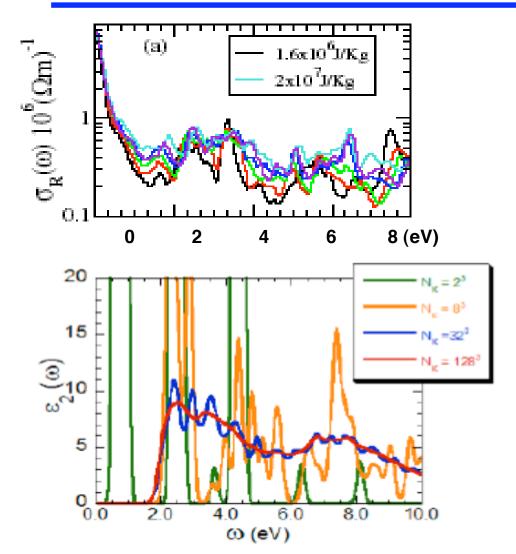
Temporal evolution of $\varepsilon(hv)$ of Au at 2.9x10⁶ J/kg

Data corrected for frequency chirp



- Quasi-steady-state behavior seen in 1.2-4 ps consistent with earlier finding [Ao et al., PRL 2006]
 - ε₁(h_V) relatively featureless
 - $\varepsilon_2(hv)$ shows distinct components
 - Intraband transitions below 2.3 eV
 - Enhancement in transitions
 - Overshoot at 1.55 eV similar to previous observation
 - Drude behavior
 - Interband transitions above 2.3 eV
 - Enhancement in transitions

Dependence of $\varepsilon(hv)$ of Au on excitation energy density $\Delta\varepsilon$



- For $\Delta \varepsilon$ of 2.6x10⁶, 4.7x10⁶ J/kg
 - The 1.4-2 ps probe delay falls within the quasi-steady-state
- For $\Delta \varepsilon$ of 1.7x10⁷ J/kg
 - Disassembly occurs at 2.38 eV for a probe delay of 1.9 ps, consistent with previous data
- Intra band transitions
 - Enhancement with $\Delta \varepsilon$
 - Drude behavior
- Inter band transitions
 - Enhancement with $\Delta \varepsilon$
 - Increasing red shift with $\Delta arepsilon$

Drude behavior in intra band transitions points to discrepancy in $\sigma(hv)$ calculation

- Spectral structures in σ(ω)
 above 1.3 eV were reported
 [Mazevet et al., PRL 2005]
 - Sampling of Brillouin Zones
 over only ~8³ k-points
- Limited BZ sampling can lead to spurious spectral structures [T. Ogitsu & E. Schwegler]
 - fcc Au at 0 K
 - Convergence is reached with 128³ k-points

ε₂ data in disagreement with calculations lacking treatment of non-adiabatic effects of electron-phonon coupling

The prominence of inter band transitions raises many interesting questions

- Persistence of d-band in the quasi-steady state
 - If d-band is the result of long range order, this would be first evidence of the quasi-steady state being a superheated solid
- Red shift can be due to temperature-induced changes in the energy distribution of the electrons
- Enhancement is likely a non-equilibrium effect
 - Equilibrium calculations for AI shows disappearance of interband transitions at melting (Benedict *et al.*, PRB 2005)
 - Photoemission spectroscopy on fs-laser excited Au at 300μJ/cm² shows residual non-thermal electron distribution after 670fs (Fann *et al.*, PRB 1992)

Ping et al., Phys. Rev. Lett. 96, 255003 (2006)

Summary

- The Idealized Slab Plasma Concept has been realized in Isochoric Laser Heating
- This has become a unique platform for the study of non-equilibrium, high-energy-density Warm Dense Matter free from gradient effects
 - Electrical conductivity
 - Lattice energy density for solid-plasma transition
 - Persistence of band structure in quasi-steady state with non-equilibrium electron DOS

Warm Dense Matter an emerging frontier in plasma & CM science

- 2000, 2002, 2005, 2007, 2009 International WDM Workshop
- 2002 LLNL Workshop on Extreme States of Material: WDM to NIF
- 2002 US-France Workshop on WDM
- 2003 CECAM Workshop on QMD Approaches of WDM
- 2006 Accelerator-Driven WDM Workshop
- 2006 Lansce Dynamic Experiment Facility Workshop